
TMSK: Text-Miner Software Kit

Nitin Indurkhya

(c) 2004

Contents

1 Preliminaries 1

1.1 Overview 1

1.2 Typographic Conventions 3

1.3 Installation 3

1.3.1 Verifying the Installation 4

1.3.2 Cleaning Up 4

2 Data Formats 5

2.1 User-specified Data 5

2.1.1 Documents 5

2.1.2 Stopwords 7

2.1.3 Stem Dictionary 7

2.2 TMSK-generated Data 8

2.2.1 Dictionaries 8

2.2.2 Sparse Vectors 8

2.2.2.1 Labeled and Unlabeled Vectors 9

2.2.3 Inverted Index 9

2.2.4 Naive Bayes Classifier Weights 10

2.2.5 Linear Classifier Weights 11

2.2.6 Named-Entity Classifier Weights 11

3 The Properties File 13

3.1 Word Identification: Customize the Tokenizer 13

3.2 XML Characteristics of Input Documents 15

3.3 Input/Output Files 15

3.4 Multi-Word Features 16

3.5 mkdict-specific Parameters 16

3.6 vectorize-specific Parameters 16

3.7 nbayes-specific Parameters 17

3.8 testnbayes-specific Parameters 17

3.9 linear-specific Parameters 17

3.10 testline-specific Parameters 17

3.11 matcher-specific Parameters 17

3.12 kmeans-specific Parameters 17

3.13 tagNames-specific Parameters 18

iii

iv

4 Running TMSK 19

4.1 Creating Dictionaries: mkdict 19

4.1.1 Syntax 19

4.1.2 Examples 19

4.2 Generating Vectors: vectorize 20

4.2.1 Syntax 20

4.2.2 Examples 20

4.3 Generating Bayes Classifiers: nbayes 21

4.3.1 Syntax 21

4.3.2 Examples 21

4.4 Applying Bayes Classifiers: testnbayes 21

4.4.1 Syntax 21

4.4.2 Examples 22

4.5 Generating Linear Classifiers: linear 22

4.5.1 Syntax 22

4.5.2 Examples 22

4.6 Applying Linear Classifiers: testline 23

4.6.1 Syntax 23

4.6.2 Examples 23

4.7 Retrieving Documents: matcher 23

4.7.1 Syntax 23

4.7.2 Examples 24

4.8 Clustering Documents: kmeans 24

4.8.1 Syntax 24

4.8.2 Examples 25

4.9 Extracting Named-Entities: tagNames 25

4.9.1 Syntax 25

4.9.2 Examples 25

5 An Extended Example 27

5.1 The Data 27

5.2 Initial Experiments 27

5.3 Further tuning 28

5.4 Conclusion 30

Appendix A 31

1

Preliminaries

1.1 Overview

The Text-Miner Software Kit (TMSK) is a comprehensive software package for pre-

dictive text mining. It includes routines for preprocessing XML-based text documents

and provides implementations of all the key tasks described in the book Text Min-

ing: Predictive Methods for Analyzing Unstructured Information (see http://www.data-

miner.com for details on how to buy this book). The algorithms and other details behind

the implementation shall not be discussed in this guide, which focuses on how the user

can use this particular implementation. Table 1.1 summarizes the tasks accomplished

by TMSK (it does not include rule-based document classification, a task done by the

companion RIKTEXT software that is also available from http://www.data-miner.com).

For reference, the sections in the book that describe the algorithms are also shown.

These tasks are accomplished by a number of different routines. Some of the rou-

tines, for example, the one for End-of-Sentence Detection, are not directly accessible to

end-users but instead are sub-modules used by end-user routines. The list of end-user

routines available in TMSK are listed in Table 1.2. Let us briefly review them:

mkdict This routine generates a dictionary from a set of documents. Either a global

dictionary or a local dictionary (specific for a category) can be generated. The

user specifies the size of the desired dictionary. There are many parameters that

Tokenization Section 2.3

Stemming Section 2.4

Text to Vectors End-of-Sentence Detection Section 2.5

Dictionary Creation Section 2.11

Vector Generation Section 2.11.1

Prediction Naive Bayes Section 3.5.4

Linear Models Section 3.5.5

Information Retrieval Document/Query Matcher Section 4.7

Finding Structure K-means Clustering Section 5.2.1

Information Extraction Named Entity Identification Section 6.2.2

Table 1.1: Tasks Accomplished by TMSK

1

2 Preliminaries

Category Task TMSK Routine

Text to Vectors Dictionary Creation mkdict

Vector Generation vectorize

Prediction Naive Bayes nbayes, testnbayes

Linear Models linear, testline

Information Retrieval Document/Query Matcher matcher

Finding Structure K-means Clustering kmeans

Information Extraction Named Entity Identification tagNames

Table 1.2: End-user Routines in TMSK

the user can adjust to guide the dictionary generation process.

vectorize This routine converts a set of documents into sparse vectors based on a given

dictionary. The documents can be labeled or unlabeled. The user can optionally

generate an inverted index of the set of documents as well. Vectors can be labeled

as belonging to a category or not. Or they can be unlabeled. There are many

parameters that the user can adjust to guide the vectorization process.

nbayes This routine builds a naive-bayes binary classifier from a set of labeled vectors.

testnbayes This routine applies a naive-bayes classifier generated by nbayes to new vectors

and splits the documents corresponding to the vectors into two parts – those

classified as positive by the classifier, and those classified as negative. The new

vectors can be labeled or unlabeled.

linear This routine builds a binary linear classifier from a set of labeled vectors. There

are several parameters that the user can adjust to vary the linear classifier

obtained.

testline This routine applies a linear classifier generated by linear to new vectors and

splits the documents corresponding to the vectors into two parts – those classified

as positive by the classifier, and those classified as negative. The new vectors can

be labeled or unlabeled.

matcher This routine matches a given document to those in a specified database and

returns a user-specified number of documents that are closest to the given doc-

ument. If the given document consists of just a sequence of keywords, matcher

behaves like a small search engine.

kmeans This routine performs k-means clustering (the user specifies k, the number of

clusters) on a set of documents. An XML tag with the cluster number is added

to each document. A description of each cluster is also given in terms of its most

important words.

tagNames This routine takes a document and tags all the named entities in it. Each named

entity is categorized into one of four types of entities – Person, Organization,

Location and Miscellaneous. The output document has color-coded tags (the user

can adjust the colors) for convienient viewing in a browser. Optionally, a full list

1.2 Typographic Conventions 3

of the named entities is also generated (for indexing purposes). The tagging is

done using a pre-trained classifier.

The various parameters to adjust the behaviour of the routines are specified in a

single tmsk.properties file. This file also allows the routines to communicate and share

information about the structure of the documents under analysis.

1.2 Typographic Conventions

In this guide, for all examples demonstrating computer interaction the fontsize is
smaller than the regular text font. The commandline prompt is shown as:

%

but naturally the actual prompt will differ from system to system (and even user to
user). Commands to be typed by the user on a computer terminal immediately follow
the prompt and take up the rest of the line. They will be in monospaced type. For
example, if the user were to type the command java mkdict, this will be shown as:

% java mkdict

Output of programs is shown in monospaced type immediately after the user input.
For example, the following shows the output of the program when the user types java
mkdict without any arguments. the program displays a description of the correct
syntax.

% java mkdict
mkdict: usage:
java mkdict size dictionaryfile
java mkdict size category dictionaryfile

1.3 Installation

TMSK is available for any hardware that has a java interpreter (version 1.3.1 or

higher). Its modules are run as java applications with command-line arguments. Java

must be installed on the hardware. To verify that java is installed on your system, is

accessible and is the appropriate version, type “java -version” in a shell window (for

PC-Windows, an MS-DOS or command-prompt window). If you don’t have java, you

first need to obtain and install it (a process that we do not describe here. Refer to

your administrator or consult web resources for java installation). TMSK will not run

without java.

Assuming that you have java running on your system, the TMSK installation con-

sists of the following steps:

• Create a directory named tmsk and download the appropriate install file from the

data-miner.com website to this directory:

– Windows: Working in an MS-DOS or command-prompt window, save as

installtmskj.exe; type “cd \tmsk” to connect to the directory; and finally type

“installtmskj” to run the installtmskj.exe program which will install TMSK.

4 Preliminaries

– Unix/Linux: Save as tmskj.tgz; connect to directory tmsk; and finally type

the command “tar -xvzf tmskj.tgz” which will install TMSK.

• Make sure that the file tmsk.zip appears in the tmsk directory. DO NOT UNZIP

tmsk.zip.

• Add the full path for tmsk.zip to the environment variable CLASSPATH. Also add

the current directory to the CLASSPATH. The process depends on your operating

system. For example, in Windows XP, click on the System icon in Control Panel

(in the Performance and Maintenance category), then on the Advanced tab click

Environment Variables, then click New to add variable CLASSPATH with value

.;c:\tmsk\tmsk.zip (if if tmsk.zip resides in the directory c:\tmsk) or, if CLASS-

PATH already exists, click Edit and add .;c:\tmsk\tmsk.zip to the existing value

of CLASSPATH. The same process works for Windows NT/2000. For older PC-

Windows 9x, add “set classpath=.;c:\tmsk\tmsk.zip” to the autoexec.bat file. For

other operating systems, consult their documentation on how to add environment

variables.

Notes: The TMSK programs are run from shell windows (For PC-windows, in an

MS-DOS or command-prompt window). The environment changes may not take effect

until the next login or restart. A drive other than c: may be used. Make sure both the

current directory and the tmsk.zip directory are in the CLASSPATH.

1.3.1 Verifying the Installation

If the installation was successful, the user should be able to type the command java

mkdict without arguments in any directory and get the output shown in Section 1.2.

If, instead, an error message is obtained, make sure that the tmsk directory has the

tmsk.zip file and that the CLASSPATH variable is properly set and has taken effect.

1.3.2 Cleaning Up

Following successful installation, the following files may be deleted or moved to backup

storage:

• For Unix/Linux: tmskj.tgz

• For Windows: installtmskj.exe

2

Data Formats

In this chapter we describe the format of the data used (and generated) within TMSK.

In general, the user need only be concerned with the format of the input data. However,

since all output data generated by TMSK are simple text files, it is useful to know their

format as well.

2.1 User-specified Data

The user must provide input data to TMSK for analysis. These consist of: text docu-

ments to be analyzed, list of stopwords and stem dictionary. Only the text documents

are mandatory input; the list of stopwords and the stem dictionary are optional.

2.1.1 Documents

TMSK analyses text documents in XML format. XML is reviewed in Chapter 2 of the

book. The input set of documents must be in the same consistent format. TMSK makes

some assumptions about the format of input documents:

• Each document is marked off from other documents by a distinguishing tag. The

user specifies this tag in the properties file. For example, <DOC> might the

distinguishing tag for a set of documents.

• Only the text in certain sections of the documents is of interest. The user specifies

the tags of these sections in the properties file. For example, the user might

specify that text marked off by <SUBJECT> and <TEXT> should be considered

for analysis.

• Documents may be labeled and the user must specify the tag used to identify

labels in the documents. For example, labels might be tagged by <TOPICS>. If

there are multiple labels, each individual label might have have a different tag.

But the tag of interest to us is the tag that includes all the labels.

An example XML document is shown in Figure 2.1 where the document is identi-

fied by <DOC>, the relevant text by <TITLE> and <ABSTRACT>, and the labels by

<TOPICS>. Note that there are multiple labels, each tagged with <TOPIC>.

5

6 Data Formats

<DOC>
<TEXT>
<TITLE>
Solving Regression Problems with Rule-based Classifiers
</TITLE>
<AUTHORS>
<AUTHOR>Nitin Indurkhya</AUTHOR>
<AUTHOR>Sholom M. Weiss</AUTHOR>
</AUTHORS>
<ABSTRACT>
We describe a lightweight learning method that induces an ensemble
of decision-rule solutions for regression problems. Instead of
direct prediction of a continuous output variable, the method
discretizes the variable by k-means clustering and solves the
resultant classification problem. Predictions on new examples are
made by averaging the mean values of classes with votes that are
close in number to the most likely class. We provide experimental
evidence that this indirect approach can often yield strong results
for many applications, generally outperforming direct approaches
such as regression trees and rivaling bagged regression trees.
</ABSTRACT>
<TOPICS><TOPIC>regression</TOPIC><TOPIC>learning</TOPIC></TOPICS>
</TEXT>
</DOC>

Figure 2.1: An XML Document

Since the XML documents are ASCII text and are clearly marked off from each

other, they can be simply put in one large file and the file provided as input to TMSK.

Alternatively the file could be compressed using zip and the zip file provided to TMSK.

If multiple files must be provided to TMSK, the files can all be zipped together and

the single toplevel zipfile provided to TMSK. TMSK recognizes zip files as those with

the extension .zip and treats all other files as ASCII files. Note that the zip files can

be arbitrarily nested. In summary, there are two ways of providing a set of XML

documents as input to TMSK:

• A single ASCII text file with all the documents. For example, a file inputdocs.xml

might contain all the XML documents to be analyzed.

• A single zipfile (with the extension .zip) which contains one or more files of doc-

uments to be analyzed. These files can themselves be either zip files or ASCII

files. For example, threedocs.zip can be an input file that contains firstdoc.xml (an

ASCII file with one document) and twodocs.zip (a zipfile which in turn contains

two documents: seconddoc.xml and thirddoc.xml).

The documents are assumed to be well-formed XML and TMSK does not validate

the XML or check for errors in the nesting of tags. It is the responsibility of the user to

validate the input before passing it to TMSK.

2.1 User-specified Data 7

A
AN
the
for
it
about
for
by

Figure 2.2: A Stopword File

was be
had have
knelt kneel
knew know
fungi fungus

Figure 2.3: A Stemmer Dictionary

2.1.2 Stopwords

Stopwords are used primarily by the routine mkdict in the dictionary creation process

and consist of words to be ignored for dictionary creation. Usually they consist of

common words that don’t have much value for distinguishing between documents.

These stopwords are provided in a stopwords file. The words are listed one per line.

Case is not relevant and words can be in upper or lower case or a mix of both. For

example, ABOUT, about and About all refer to the same word. A sample stopword file

is shown in Figure 2.2.

The stopword file can also be used to discard inappropriate words that result from

tokenization. For instance, the string +/- keeps showing up as a word and we wish to

exclude it, simply adding it to the stopwords file would ensure that it is excluded from

the dictionary.

2.1.3 Stem Dictionary

The Stem Dictionary is used as an aid by the stemmer to find stems of words. A sample

stem dictionary is shown in Figure 2.3. It consists of two words on each line (separated

by an arbitrary number of whitespace characters) – the second word is a stem for the

first. Typically, the stemmer dictionary consists of stems that cannot be deduced by the

stemmer. Thus, there is no need to include the line books book because the stemmer

can readily deduce this on its own. Lines that don’t contain exactly two words are

discarded by the stemmer.

One may elect to add entries to the stemmer to force certain stems. For example,

the stemmer may be stemming a certain word incorrectly. Or perhaps we don’t wish a

word to be stemmed at all. In the latter case, for example, adding the line organization

organization to the stemmer dictionary would prevent the word organization from

getting stemmed.

8 Data Formats

profits
company
General:Motors
share

Figure 2.4: An Example Dictionary

2.2 TMSK-generated Data

The TMSK routines generate a number of datafiles that are then used as input for

other TMSK routines. In this section, we describe the format of these files. Under

normal circumstances, there is not much need to know the format of these files – they

can be generated and directly provided as input to the appropriate routines. However,

the files are text files and advanced users may want to edit some of them manually.

2.2.1 Dictionaries

The TMSK routine mkdict generates dictionaries. The format of the dictionary is as

follows:

• A series of words, one per line.

• “Regular” words are in lower-case.

• Multi-words consist of “regular” words separated by the “:” character and pre-

serve case. For example, United:States is a multi-word.

Figure 2.4 illustrates a sample dictionary with four words, one of which is a multi-word.

2.2.2 Sparse Vectors

TMSK processes documents into a format we call sparse vector form. This format is

shared with RIKTEXT (Rule Induction Kit for Text) that is available in conjunction

with TMSK. The TMSK routine vectorize creates sparse vectors from XML text docu-

ments.

The documents are converted into a spreadsheet format where each row corre-

sponds to a document, and each column corresponds to a word from a dictionary.

Individual cells in the spreadsheet are filled with frequency counts (number of times

the word appears in the document). For more details, the user may refer to Chapters

2 and 3 of the book. Typically, the number of words (columns) is very large and for a

given document (row), most of the words do not apply and the corresponding cells are

zero. Hence it is more efficient to store only the information of the non-zero cells (the

cell number and its value). This is the sparse vector form. Figure 2.5 gives a simple

example of the sparse vector form that corresponds to a spreadsheet.

The format of the sparse vector file is as follows:

• All the non-zero pairs for a document appear on the same line.

2.2 TMSK-generated Data 9

Spreadsheet Sparse Vectors

0 15 0 3 (2,15) (4,3)

12 0 0 0 (1,12)

8 0 5 2 (1,8) (3,5) (4,2)

Figure 2.5: Spreadsheet to Sparse Vectors

• The non-zero pairs for each document should be in increasing order of column

numbers.

• The non-zero pairs are separated by white space.

• Each non-zero pair is formatted as first the column number, then an character,

and finally the frequency.

For example, the vector file corresponding to the spreadsheet of Figure 2.5 would be
as follows:

2@15 4@3
1@12
1@8 3@5 4@2

2.2.2.1 Labeled and Unlabeled Vectors

For training a classifier, we need labeled documents. Having obtained a classifier, we

would like to use it to classify unlabeled (new) documents. vectorize produces both

labeled and unlabeled vectors in the following format:

• If documents are labeled, then the labels appears at the front of the corresponding

vectors (separated by whitespace from the non-zero pairs).

• Only binary labels are permitted – documents either belong to a class (label=1)

or not (label=0). A categorizer is built for the positive class (cases with label=1).

• In a vector file, all vectors must be of the same type (labeled or unlabeled).

The earlier example of a vector file shown consisted of unlabeled vectors. A hy-
pothetical labeled vector file corresponding to the spreadsheet of Figure 2.5 (with
hypothetical labels) might be as follows (the first and last case belong to the class,
the middle case does not belong to the class):

1 2@15 4@3
0 1@12
1 1@8 3@5 4@2

2.2.3 Inverted Index

The sparse vector file shows the nonzero features and frequencies organized in docu-
ment order. The inverted index contains exactly the same information, but organized
in feature order – for each feature, it lists the documents in which the feature is non-
zero and also lists the relevant frequency. Since this information is sparse, the inverted
index uses several arrays of pointers to store this information to facilitate easy access.
We shall describe this index generated using the example of Figure 2.5. For this data,
the inverted index file generated by TMSK would be as follows:

10 Data Formats

4 6 3
0 2 3 4
1 2 0 2 0 2
12 8 15 5 3 2
234 144 93

The first line contains the sizes of the numbers in the index. For this example, there

are 4 features, 6 non-zero frequencies and 3 cases.

We shall get to the second line later. The third and fourth lines contain the

frequency and document information organized in feature-order. The third line con-

tains the document numbers (counting from 0), while the fourth line contains the

corresponding frequencies. For example, feature 1 has 2 non-zero frequencies: 12 for

document 2 (labeled as 0), and 8 for document 3 (labeled as 2). Both these lines contain

exactly the same number of elements – the number of non-zero frequencies. The second

line contains pointers (counting from 0) to the start of the documents (in lines 3 and

4) for each feature. Thus, feature 1 starts from location 0 (the first element), feature 2

starts from location 2 (the third element), and so on. This line contains as many entries

as there are features.

Finally the last line contains a normalization weight for each document. This

normalization weight is the sum of the squared frequencies for the document. For

example, for the third document, the weight is 82 + 52 + 22 = 93.

2.2.4 Naive Bayes Classifier Weights

The weights file generated by nbayes is used exclusively by testnbayes. The general
format of the file is as follows:

Number of positive class documents
Number of negative class documents
Number of features (m)
For each feature, number of positive class documents with non-zero frequencies.
For each feature, number of negative class documents with non-zero frequencies.

For our example, if we assume that the first and third documents are in the positive
class, then we will get the following weights file:

2
1
4
1
1
1
2
1
0
0
0

As can be seen, there is one negative class document with a non-zero frequency for

the first feature; the other features have no negative class documents with non-zero

frequencies and hence their corresponding entries are 0.

2.2 TMSK-generated Data 11

2.2.5 Linear Classifier Weights

The linear classifier weights file is generated by linear and is used exclusively by

testline. It basically contains the weights for the linear classifier (one weight for each

feature and a constant. The constant bias is stored at the end). The first line of the

weights file has to be one of tf, tf*idf or binary and indicates the feature transfor-

mations done to the training data. This helps the testline routine determine what

feature transformations need to be done to the new documents before applying the

linear classifier.

2.2.6 Named-Entity Classifier Weights

The routine tagNames uses a weights file called tmskner.wts in the tmsk.zip jar archive.

It is in a proprietary format and should not be edited or removed (otherwise tagNames

will no longer operate as expected). As such, its format should not concern the user too

much.

3

The Properties File

The TMSK routines share a number of common parameters. Also, there are a number

of options that are not likely to be altered much for individual routines. All these

parameters and options are convieniently specified in a tmsk.properties file. A sample

properties file is shown in Figure 3.1. A few characteristics of this file should be

obvious:

• Comments can be included and begin with the # character.

• Blank lines are allowed for readability.

• Non-blank lines that are not comments are parameter assignments.

• Parameter assignments are of the type parameter=value.

• The parameters can be listed in any order.

The file shown in Figure 3.1 is by no means complete. There are many more

parameters that can be specified. Table 3.1 gives a complete list of all the parameters

that are specified in the properties file. While it may seem that there are a very large

number of parameters to specify, in fact it can be seen that many have default values

(and so are optionally specified); others are routine-specific and need to be listed only

if the particular routine is being used. The parameters can be logically grouped into

sets. In the following sections we shall use such a logical grouping to describe the

parameters in greater detail.

3.1 Word Identification: Customize the Tokenizer

There are three optional parameters that control how the tokenizer identifies words in

text:

• word-delimiter: This parameter specified the characters to be used to delimit

words. All the characters are listed together in one string. It defaults to "

\n\t\r,.;:!?()<>[]+\"\’" which pretty much covers common usage of words.

13

14 The Properties File

this tag identifies individual documents. case sensitive.
doctag=REUTERS

these are the tags for the text to be used. case sensitive.
bodytags=TITLE BODY

#labeltag is the tag for the categories/labels
labeltag=TOPICS

input can be a zip file (with extn .zip) or an xml file
infile=reut2-001.sgm

input dictionary file
dictionary=new.dx

stopwords to ignore for dictionary creation
stopwords=stop.wds

stem dictionary used by stemmer. if file name is blank, stemming not done.
stems=stems.list

Figure 3.1: A Simple tmsk.properties File

Parameter Name Brief Description

word-delimiters A string of characters that can separate words (optional)

whitespace-chars A string of whitespace characters in text (optional)

sentence-delimiters A string of the non-whitespace end-of-sentence delimiters (optional)

doctag XML tag for individual documents

bodytags XML tags of the text to be analyzed

labeltag XML tag of document labels (if any)

infile Name of the input text file of XML documents

dictionary Name of the dictionary file

stopwords Name of the stopwords file (optional)

stems Name of the stemming dictionary file (optional)

vectorfile Name of the sparse vector file

indexfile Name of inverted index file corresponding to vectorfile

multi-word-length Maximum number of words in a multi-word (optional)

multi-word-span Maximum distance between words in a multi-word (optional)

signif-level Significance-level for finding multi-words (optional)

minimum-frequency Minimum frequency of words in the output dictionary (optional)

probability-threshold Parameter for the testnbayes routine (optional)

reject-threshold Parameter for the testnbayes routine (optional)

feature-type Possible values: binary (0 or 1), tf (term frequency), or tf*idf (weight) (optional)

lambda Parameter for the linear routine (optional)

learning-rate Parameter for the linear routine (optional)

linear-iterations Parameter for the linear routine (optional)

decision-threshold Parameter for the linear routine (optional)

per-color Parameter for the tagNames routine (optional)

loc-color Parameter for the tagNames routine (optional)

org-color Parameter for the tagNames routine (optional)

misc-color Parameter for the tagNames routine (optional)

Table 3.1: Summary of Parameters in tmsk.properties File

3.2 XML Characteristics of Input Documents 15

• whitespace-chars: This parameter specifies the characters to be treated as whites-

pace. This parameter defaults to " \n\t\r". Again, this is a good default and users

to modify it only if they are clear what they are doing.

• sentence-delimiters: These are non-whitespace characters that can follow an end-

of-sentence period. Ordinarily, these are only white space characters (i.e. the

default value of this parameter is null), but there can be text-specific examples

where other values need to be considered. For example, in certain marked-up

documents a tag can occur immediately after the end-of-sentence period (as in

...are the new world champions.</TEXT>) and for such documents one must

specify sentence-delimiters="<" in the properties file.

3.2 XML Characteristics of Input Documents

Input text documents are in XML format. The following parameters allow the user to

specify the relevant tags:

• doctag: This specifies the name of the tag that marks off documents from each

other. For example, if <DOC> is the distinguishing tag, then it can be specified as

doctag=DOC.

• bodytags: This specifies the names of the tags that contain the text of interest.

Multiple names are separated by whitespace (usually a single space). For ex-

ample, if one is interested in text within <TITLE> and <BODY>, then this is

specified as bodytags=TITLE BODY.

• labeltag: This specifies where the document labels are located. For example, if the

labels are tagged by <TOPICS>, this is specified as labeltag=TOPICS. Note that

the labeltag to specify must be the one that includes all of the labels. For example,

individual labels may be tagged with <TOPIC>, but if all the <TOPIC> labels

are contained within <TOPICS>, then <TOPICS> is defined as the labeltag, not

<TOPIC>.

3.3 Input/Output Files

While most input/output files for the various routines are specified on the commandline

itself, some data files that will not vary much during a text mining session are specified

as parameters in the properties file. These files are:

• infile: This specifies the name of the file that contains the XML documents being

mined. This can either be a simple text file with all the XML documents, or it can

be a zip file (with the extension .zip) that contains all the XML documents (either

in flat files or in zip files). It is strictly an input file and is never modified by any

TMSK routine.

• dictionary: This specifies the name of the dictionary file to be used as input.

16 The Properties File

• stopwords: This specifies the name of the stopwords file. It is strictly an input file

and is never modified by the TMSK routines. If this property is missing, or the

file is not specified, it is assumed that there is no stopwords file.

• stems: This specifies the name of the stemmer dictionary. It is strictly an input

file and is never modified. If this property is missing or the file is not specified, it

is assumed that there is no stemmer dictionary.

• vectorfile: This specifies the name of the file that contains the sparse vectors.

Usually the vectors will correspond to the XML documents in the file specified as

infile. The vectors can be labeled or unlabeled (but must consistently be of the

same type).

• indexfile: This specifies the name of the inverted index file corresponding to the

sparse vectors. It is created by vectorize only if the file name is specified. The

matcher routine requires the indexfile. For other programs, it is often optional

(having access to this file speeds up certain routines).

3.4 Multi-Word Features

Multi-word features are generated by both mkdict and vectorize. These features are

controlled by the following parameters:

• multi-word-length: This specifies the maximum number of words in a multi-word.

Clearly, this must be greater than 1.

• multi-word-span: This specifies the maximum distance between the a multi-

word’s words in the original text. Clearly, this cannot be less than the multi-

word-length.

• signif-level: This specifies the significance-level to use in selecting multi-words

for inclusion in the dictionary. The default value is 0.0.

These features must be specified if multi-words are to be generated. Incorporating

multi-words can slow down the routines as well as require significantly larger memory

resources. Caution is advisable.

3.5 mkdict-specific Parameters

• minimum-frequency: This specifies the minimum frequency of words for inclusion

into the dictionary. The default value is 1.

3.6 vectorize-specific Parameters

vectorize has no private parameters. The indexfile (if specified) is an output parameter

and will be overwritten if it already exist.

3.7 nbayes-specific Parameters 17

Note that feature-type is NOT a parameter for vectorize which always generates

vectors with frequency counts. The conversion to other types of features is done by

other routines that use the vectors.

3.7 nbayes-specific Parameters

nbayes has no private parameters.

3.8 testnbayes-specific Parameters

• probability-threshold: This specifies the probability-threshold for making a posi-

tive classification. It is an optional parameter (default value is 0.5).

• reject-threshold: This specifies the threshold that must be exceeded in order

to make a classification. If the threshold is not reached, the document is not

classified. It defaults to 0.5 if not specified.

3.9 linear-specific Parameters

• feature-type: This can be one of binary, tf or tf*idf. The default is tf.

• lambda: The default value is 0.001, but it can be set to a smaller positive value

(for example, 0.0001) if necessary.

• learning-rate: The default value is 0.25, but it can be set to another positive real

number as well.

• linear-iterations: The default value is 40. Set it to a different positive integer if

necessary.

• decision-threshold: The default value is 0.0. Changing this affects recall and

precision. Negative values boost recall (and reduce precision).

3.10 testline-specific Parameters

• decision-threshold: The default value is 0.0. Changing this affects recall and

precision. Negative values boost recall (and reduce precision).

3.11 matcher-specific Parameters

• feature-type: This can be one of binary, tf or tf*idf. The default is tf.

3.12 kmeans-specific Parameters

• feature-type: This can be one of binary, tf or tf*idf. The default is tf.

18 The Properties File

3.13 tagNames-specific Parameters

• per-color: The default color for highlighting PER named-entities is blue. Change

it to a different color here.

• loc-color: The default color for highlighting LOC named-entities is green. Change

it to a different color here.

• org-color: The default color for highlighting ORG named-entities is red. Change

it to a different color here.

• misc-color: The default color for highlighting MISC named-entities is orange.

Change it to a different color here.

4

Running TMSK

In this chapter we will describe each of the TMSK routines in detail and explain how

they can be used.

4.1 Creating Dictionaries: mkdict

4.1.1 Syntax

The routine mkdict creates dictionaries from input XML documents. The syntax is as
follows:

java mkdict size dictionaryfile
java mkdict size category dictionaryfile

If the name of a category is specified, then a local dictionary is generated from only the

documents of that category. The category is a string and if it contains whitespace, it

must be enclosed within quotes to pass it intact to the program. Note that size is an

integer greater than 1. The dictionary generated is written to dictionaryfile.

All other parameters are taken from the tmsk.properties file:

• The input file of XML documents is specified with the infile parameter.

• Other non-optional parameters are: doctag and bodytags. If the documents are

labeled and a local dictionary is sought, then labeltag must also be specified.

• Optional parameters are: stopwords, stems, minimum-frequency, multi-

word-length, multi-word-span, signif-level, word-delimiters, whitespace-chars,

sentence-delimiters.

Note that if stopwords are used to filter the dictionary, these are removed AFTER the

words are generated. Hence the size of the dictionary will be less than or equal to size.

4.1.2 Examples

Lets say we wish to generate a dictionary from the articles of August 20, 1996 in the
Reuters RCV1 distribution. Set parameters in the tmsk.properties file as follows:

19

20 Running TMSK

doctag=newsitem
bodytags=title text
labeltag=metadata
infile=19960820.zip

Now, java mkdict 200 newreut.dx will generate a global dictionary of 200 words and

store it in the file newreut.dx. If a local dictionary for the category ECAT is sought, then

run java mkdict 200 ECAT ecat.dx instead which will save the words in ecat.dx. The

optional parameters can be set to obtain different dictionaries. Note that if stopwords

are removed, then in the above examples, the sizes of the dictionaries generated will

be less than 200.

4.2 Generating Vectors: vectorize

4.2.1 Syntax

The routine vectorize creates sparse vectors from input XML documents based on a
dictionary. The syntax is as follows:

java vectorize vectorfile
java vectorize category vectorfile

The vectors are written to the file specified by vectorfile. If the name of a category is

specified, labeled vectors are produced. Each vector is labeled a “1” if the corresponding

document belongs to the category, or a “0” if it does not.

The category is a string and if it contains whitespace, it must be enclosed within

quotes to pass it intact to the program. If no category is specified, unlabeled vectors

are produced.

All other parameters are taken from the tmsk.properties file:

• Input documents are in infile, the dictionary is in dictionary.

• Other non-optional parameters are: doctag and bodytags. If the vectors are to be

labeled , then labeltag must also be specified.

• Optional parameters are: indexfile, stems, multi-word-length, multi-word-span,

word-delimiters, whitespace-chars, sentence-delimiters.

The optional indexfile is worth noting. This corresponds to the inverted index of the

vectorfile and is generated by vectorize if specified. It is a required input for the matcher

routine.

4.2.2 Examples

Lets say we have generated a dictionary, nreut.dx from the articles of August 20, 1996
in the Reuters RCV1 distribution and wish to vectorize the articles of September 1,
1996 using this dictionary. Set the parameters in tmsk.properties as:

doctag=newsitem
bodytags=title text
labeltag=metadata

4.3 Generating Bayes Classifiers: nbayes 21

infile=19960901.zip
dictionary=nreut.dx
vectorfile=sept1.vec

Now, java vectorize will generate unlabeled vectors in the file sept1.vec. To get labeled

vectors for the class ECAT, run java vectorize ECAT instead. To get an indexfile as

well, set the indexfile parameter in the properties file. Other optional parameters

should typically be the same as used in the dictionary generation stage.

4.3 Generating Bayes Classifiers: nbayes

4.3.1 Syntax

The routine nbayes generates a naive-bayes classifier. The syntax is as follows:

java nbayes outputfile

The outputfile will contain the naive-bayes classifier. Input to nbayes is provided via

the properties file:

• The vectors are obtained from the file specified as the vectorfile parameter. Note

that the vectors must be labeled.

• Optionally, the indexfile is also accessed if available. Having the indexfile speeds

up computation slightly.

4.3.2 Examples

Lets say we have generated vectors, sept1.vec, and wish to get a naive-bayes classifier
based on these vectors. Set the parameter in tmsk.properties as:

vectorfile=sept1.vec

Now, java nbayes sept1.nb will generate a naive-bayes classifier in the file sept1.nb.

4.4 Applying Bayes Classifiers: testnbayes

4.4.1 Syntax

The routine testnbayes applies a naive-bayes classifier to new documents and creates
two files – one with positive predictions, the other with negative predictions. The
syntax is as follows:

java testnbayes wtsFile positiveCasesFile negativeCasesFile

The wtsFile is the file generated by nbayes. All other parameters are taken from the

tmsk.properties file:

• Input documents are in infile, the corresponding vectors are in vectorfile and the

doctag specifies how to separate the documents in infile.

• Optional parameters are: indexfile, probability-threshold, reject-threshold.

22 Running TMSK

Having indexfile speeds up the program slightly. The two thresholds, probability-

threshold and reject-threshold default to 0.5 if not specified. If the vectors are already

labeled, performance metrics (precision, recall) are also written to the terminal.

4.4.2 Examples

Lets say we have generated a naive-bayes classifier, sept1.nb, and wish to apply it to
the documents of August 20, 1996 in the Reuters RCV1 distribution. Set the parameter
in tmsk.properties as:

doctag=newsitem
infile=19960820.zip
vectorfile=aug20.vec

Now, java testnbayes sept1.nb pcases ncases will apply the classifier in sept1.nb and

split the documents in 19960820.zip into pcases (the positive classifications) and ncases

(the negative classifications) using 0.5 as the probability and reject thresholds.

4.5 Generating Linear Classifiers: linear

4.5.1 Syntax

The routine linear generates a linear classifier. The syntax is as follows:

java linear outputfile

The outputfile will contain the linear classifier weights. Input to linear is provided via

the properties file:

• The vectors are obtained from the file specified as the vectorfile parameter.Note

that the vectors must be labeled.

• Optionally, the indexfile is also accessed if available. Having the indexfile speeds

up computation slightly.

• Optionally, the following parameters can also be specified: lambda, learning-rate,

decision-threshold, feature-type, linear-iterations. If they are not specified, default

values are used: lambda=0.001, learning-rate=0.25, linear-iterations=40, decision-

threshold=0.0 and feature-type=tf.

4.5.2 Examples

Lets say we have generated vectors, sept1.vec, and wish to get a linear classifier based
on these vectors. Set the parameter in tmsk.properties as:

vectorfile=sept1.vec

Now, java linear sept1.lc will generate a linear classifier with default learning param-

eters in the file sept1.lc.

4.6 Applying Linear Classifiers: testline 23

4.6 Applying Linear Classifiers: testline

4.6.1 Syntax

The routine testline applies a linear classifier to new documents and creates two files
– one with positive predictions, the other with negative predictions. The syntax is as
follows:

java testline wtsFile positiveCasesFile negativeCasesFile

The wtsFile is the file generated by linear. All other parameters are taken from the

tmsk.properties file:

• Input documents are in infile, the corresponding vectors are in vectorfile and the

doctag specifies how to separate the documents in infile.

• Optional parameters are: indexfile, decision-threshold.

Having indexfile speeds up the program slightly. The decision-threshold allows

precision-recall tradeoff and defaults to 0.0 if not specified (specifying a negative value

favors recall over precision). If the vectors are already labeled, performance metrics

(precision, recall) are also written to the terminal.

4.6.2 Examples

Lets say we have generated a linear classifier, sept1.lc, and wish to apply it to the
documents of August 20, 1996 in the Reuters RCV1 distribution. Set the parameter in
tmsk.properties as:

doctag=newsitem
infile=19960820.zip
vectorfile=aug20.vec

Now, java testnbayes sept1.lc pcases ncases will apply the classifier in sept1.lc and split

the documents in 19960820.zip into pcases (the positive classifications) and ncases (the

negative classifications) using 0.0 as the decision threshold.

4.7 Retrieving Documents: matcher

4.7.1 Syntax

The routine matcher matches a given document to a set of documents and retrieves the
closest matches. The syntax is as follows:

java matcher document num-matches outputFile

Here document is the given document, num-matches is a positive integer that specifies

how many of the closest matches to retrieve and outputFile is a HTML file that contains

the matched documents (it can be viewed using a browser). All other parameters are

taken from the tmsk.properties file:

24 Running TMSK

• The input set of documents from which the matched documents are retrieved is

infile, inverted index of the corresponding document vectors is in indexfile, the

corresponding dictionary is in dictionary and the doctag specifies how to separate

the documents in infile.

• The optional parameter is feature-type. It defaults to tf if not specified.

4.7.2 Examples

Lets say we have want to find the 10 closest matches to the document 2286newsML.xml
from the articles of August 20, 1996 in the Reuters RCV1 distribution. Lets say we use
a dictionary glob.dx to vectorize the articles and get an inverted index aug20.idx. Set
the parameter in tmsk.properties as:

doctag=newsitem
infile=19960820.zip
indexfile=aug20.idx
dictionary=glob.dx

Now, java matcher 2286newsML.xml 10 matches.html will put the 10 best matches to

2286newsML.xml into the file matches.html.

4.8 Clustering Documents: kmeans

4.8.1 Syntax

The routine kmeans clusters a set of documents into a given number of clusters using
the k-means algorithm. The syntax is as follows:

java kmeans k outputFile

Here k is a positive integer, the number of clusters. The outputFile will contain the

input documents with each document having a new tag, <tmsk:kmeans>, that specifies

the cluster number (from 1 to k) to which it has been clustered. All other parameters

are taken from the tmsk.properties file:

• The input set of documents to be clustered is infile, the corresponding vectors are

in vectorfile, the corresponding dictionary is in dictionary and the doctag specifies

how to separate the documents in infile.

• The optional parameters are indexfile, feature-type. Having indexfile speeds up

the program slightly. feature-type defaults to tf if not specified.

Cluster details (key descriptive words) are written to the terminal and can be redi-

rected to a file and saved for future reference.

The clustering is done on the vectors. If labeled vectors are provided, then the

labels are simply ignored for the clustering process. The number of documents should

match the number of vectors, but if there are more documents than vectors, as many

documents as there are vectors are tagged with the corresponding cluster numbers and

the remaining documents are simply left as given.

4.9 Extracting Named-Entities: tagNames 25

4.8.2 Examples

Lets say we have want to cluster the articles of August 20, 1996 in the Reuters RCV1
distribution into 10 clusters. Lets say we use a dictionary glob.dx to vectorize the
articles and get vectors aug20.vec. Set the parameter in tmsk.properties as:

doctag=newsitem
infile=19960820.zip
indexfile=aug20.idx
dictionary=glob.dx

Now, java kmeans 10 clustered.xml will cluster the articles in 19960820.zip into 10

clusters and write the retagged articles to the output file clustered.xml.

4.9 Extracting Named-Entities: tagNames

4.9.1 Syntax

The routine tagNames takes a document and identifies named-entities in it. Four types
of named-entities are recognized: PERson, ORGanization, LOCation and MISCella-
neous. The syntax is as follows:

java tagNames inFile outFile
java tagNames inFile outFile namesFile

If namesFile is specified, all the named-entities (along with their category: PER, ORG,

LOC or MISC) are saved in this file for future use. outFile is the same in inFile

except it has all the named-entities tagged with HTML color-codes that allow visual

inspection of the named-entities in a browser. The optional parameters are taken from

the tmsk.properties file:

• word-delimiters, whitespace-chars, sentence-delimiters, per-color, org-color, loc-

color, misc-color. Default values are used for these parameters.

4.9.2 Examples

Lets say we want to find the named-entities in the document 2286newsML.xml of the

Reuters RCV1 distribution. Lets say we want to save them to a file newreut.ne as

well. Lets say we are happy with the default color-codes for the named-entities. java

tagNames 2286newsML.xml ner.html newreut.ne will put named-entities in newreut.ne

and also produce ner.html, a copy of 2286newsML.xml with color-coded named-entities,

that can be viewed using a browser.

5

An Extended Example

In this chapter we present an extended example of TMSK in action. The purpose is to

show how this software can be used for text mining.

5.1 The Data

The data we use is the OHSUMED collection of abstracts gathered from

MEDLINE. At least at the moment, the data can be downloaded from:

ftp://medir.ohsu.edu/pub/ohsumed and probably other places (search the web).

The corpus that we use is actually an arbitrary selection from the total OHSUMED

corpus. Since the OHSUMED collection is not in XML fromat, a special processing

program was necessary to transform the data.

A java program to convert the OHSUMED file to XML is included in Appendix A.

Obviously it is not good for other data, but still, it illustrates how to go about the

conversion.
Once the data is in XML format, it is ready to be processed by TMSK. The relevant

XML attributes in the tmsk.properties file are:

doctag=DOC
bodytags=TITLE TEXT
labeltag=SUBJECTS
sentence-delimiters="\"<"

We set ourselves the task of finding a good linear classifier for the category Rabbits

(we choose the linear classifier as it is generally more accurate than Naive Bayes). We

set up training and test sets. There were 11,561 training cases and 3158 test cases,

approximately a 4:1 split. The uneven numbers arise because some of the originally

selected test documents had no text content and were discarded.

5.2 Initial Experiments

To start, we will generate a global dictionary with 1000 features, without deleting stop

words and without stemming.

% java mkdict 1000 global.dt

27

28 An Extended Example

We will use this dictionary global.dt to generate train and test vectors, train.vec
and test.vec. Note that infile will be different for the two vectorize calls shown below:

% java vectorize Rabbits train.vec
% java vectorize Rabbits test.vec

We will not show the changes to the tmsk.properties file unless there is something

notable about the change.
Having obtained train/test vectors, we can try the linear program with default

parameters:

% java linear rabbit.wts
precision: 74.6377 recall: 95.3704 f-measure: 83.7398
% java testline rabbit.wts rabpos.txt rabneg.txt
precision: 38.2353 recall: 55.3191 f-measure: 45.2174

The two files rabpos.txt and rapneg.txt contain the positive and negative predictions of

the linear classifier in rabbit.wts.
The performance of this classifier on the test set is certainly not impressive. As a

first step, let us generate a new dictionary by deleting stop words. This results in a
dictionary of 884 words. Using this dictionary, we re-generate train/test vectors and
retrain the linear classifier:

% java mkdict 1000 global.dt
% java vectorize Rabbits train.vec
% java vectorize Rabbits test.vec
% java linear rabbit.wts
precision: 94.8357 recall: 93.5185 f-measure: 94.1725
% java testline rabbit.wts rabpos.txt rabneg.txt
precision: 41.3793 recall: 51.0638 f-measure: 45.7143

The result is a bit better than before, but the improvement is slight. Let us next

try with stemming, a procedure which tends to increase the frequency of features by

neutralizing grammatical variants. The resulting dictionary has 886 stems.

% java mkdict 1000 global.dt
% java vectorize Rabbits train.vec
% java vectorize Rabbits test.vec
% java linear rabbit.wts
precision: 97.7064 recall: 98.6111 f-measure: 98.1567
% java testline rabbit.wts rabpos.txt rabneg.txt
precision: 67.3469 recall: 70.2128 f-measure: 68.7500

This is a real improvement over our previous results. And is a good initial benchmark.

5.3 Further tuning

Another dictionary option to try is generating multi-word features. We will leave the
stop word and stemming options as they are, but specify multi-word phrase of length
two with a possible separation of 4 words. The multi-word option requires significantly
larger memory resources.

% java -Xmx500m mkdict 1000 global.dt
% java vectorize Rabbits train.vec
% java vectorize Rabbits test.vec
% java linear rabbit.wts

5.3 Further tuning 29

precision: 97.6959 recall: 98.1481 f-measure: 97.9215
% java testline rabbit.wts rabpos.txt rabneg.txt
precision: 66.0000 recall: 70.2128 f-measure: 68.04

We see a very slight degradation in our resulting classifier. It appears the extra cost of

phrase processing is not worthwhile.
Returning to the use of stop words and stemming but no phrases, we can try both

reducing and increasing the number of features. Reducing the feature set to a nominal
500 features gives the following result:

% java mkdict 500 global.dt
% java vectorize Rabbits train.vec
% java vectorize Rabbits test.vec
% java linear rabbit.wts
precision: 64.4444 recall: 26.8519 f-measure: 37.9085
% java testline rabbit.wts rabpos.txt rabneg.txt
precision: 21.7391 recall: 10.6383 f-measure: 14.2857

Reducing the feature set is apparently a very bad idea for this data. We can also try
doubling the feature set size:

% java mkdict 2000 global.dt
% java vectorize Rabbits train.vec
% java vectorize Rabbits test.vec
% java linear rabbit.wts
precision: 99.5392 recall: 100.0000 f-measure: 99.7691
% java testline rabbit.wts rabpos.txt rabneg.txt
precision: 58.1818 recall: 68.0851 f-measure: 62.7451

Increasing the feature set size is not as disastrous as decreasing it was, but the results

on the test set are somewhat weaker, primarily because of reduced precision.
We can also vary the method of weighting features. Resetting to stemming, stop

words and 1000 features, we change the weights to binary from the default of total
frequency.

% java mkdict 1000 global.dt
% java vectorize Rabbits train.vec
% java vectorize Rabbits test.vec
% java linear rabbit.wts
precision: 94.1704 recall: 97.2222 f-measure: 95.6720
% java testline rabbit.wts rabpos.txt rabneg.txt
precision: 74.4681 recall: 74.4681 f-measure: 74.4681

This is the best result yet on the test set. We should try the other weighting option,
tf*idf:

% java mkdict 1000 global.dt
% java vectorize Rabbits train.vec
% java vectorize Rabbits test.vec
% java linear rabbit.wts
precision: 97.7273 recall: 99.5370 f-measure: 98.6239
% java testline rabbit.wts rabpos.txt rabneg.txt
precision: 55.7692 recall: 61.7021 f-measure: 58.5859

This result is worse than simple total frequency and substantially worse than binary

features.
Another possible improvement is to change the parameters in the linear classifier.

The one possibly affecting classification performance is the size of the search space,
lambda. We can try setting it to 0.0001 and rerun the linear classifier:

30 An Extended Example

% java linear rabbit.wts
precision: 100.0000 recall: 100.0000 f-measure: 100.0000
% java testline rabbit.wts rabpos.txt rabneg.txt
precision: 57.4074 recall: 65.9574 f-measure: 61.3861

This is also not a terribly good idea.

5.4 Conclusion

From the experiments above, it appears that the best classifier for the topic Rabbits

results from stop word elimination, stemming and 1000 binary features. Of course, the

result might be different for a different topic or for topics in a different data set. While

this is by no means the best solution for this data, it illustrates the process involved in

iteratively trying different parameter values and examining the results.

Appendix A

/* ohsumed2XML */
/** formats the OHSUMED files into XML */
/* java ohsumed2XML inputfile outputfile */
/* */
/* This program is specific to the OHSUMED */
/* files but is an example of how to convert */
/* other non-xml files */
/* */
/* The OHSUMED files have an indicator tag */
/* the data on the following line(s): */
/*
/* .I 274314 */
/* .U */
/* 91002386 */
/* .S */
/* Br J Dermatol 9101; 123(3):365-73 */
/* .M */
/* Adult; Female; Human; Male; Nails/AH/US; Ultrasonics; Water. */
/* .T */
/* Ultrasound velocity in human fingernail and effects of hydration: */
/* validation of in vivo nail thickness measurement techniques. */
/* .P */
/* JOURNAL ARTICLE. */
/* .W */
/* Distal nail thickness was measured using an electronic micrometer */
/* and both distal and proximal nail ultrasound times were recorded */
/* */
/* .A */
/* Finlay AY; Western B; Edwards C. */
/* */
/* */
/* The XML version: */
/* */
/* <DOC> */
/* <TITLE> */
/* Ultrasound velocity in human fingernail and effects of hydration: */
/* validation of in vivo nail thickness measurement techniques. */
/* </TITLE> */
/* <AUTHOR> */
/* Finlay AY; Western B; Edwards C. */
/* </AUTHOR> */
/* <SUBJECTS> */
/* <SUBJECT> */
/* Adult */

31

32 An Extended Example

/* </SUBJECT> */
/* <SUBJECT> */
/* Female */
/* </SUBJECT> */
/* <SUBJECT> */
/* Human */
/* </SUBJECT> */
/* <SUBJECT> */
/* Male */
/* </SUBJECT> */
/* <SUBJECT> */
/* Nails */
/* </SUBJECT> */
/* <SUBJECT> */
/* Ultrasonics */
/* </SUBJECT> */
/* <SUBJECT> */
/* Water */
/* </SUBJECT> */
/* </SUBJECTS> */
/* <TEXT> */
/* Distal nail thickness was measured using an electronic */
/* micrometer and both distal and proximal nail ultrasound */
/* times were recorded in 20 volunteers (10 male, 10 female), */
/* ... */
/* </TEXT> */
/* </DOC> */

import java.text.*;
import java.util.*;
import java.io.*;

class ohsu2XML {
public static void main(String[] args) {

String line;
int outlen = 72; // set output line length
int linect;
int posi;
int marker;
int ixent;
boolean htmlflg;
boolean textflg;
boolean longflg = false;
String str;

String title;
String body;
String byline;
String subject;
String subjec;
String source;
StringBuffer text = new StringBuffer();

try {
if (args.length<2 || args.length>2)

throw new tmskException("usage:\njava ohsumed2XML infile outfile");

5.4 Conclusion 33

}
catch (tmskException e1) {System.out.println("mkdict: "+e1.getMessage());}

BufferedReader in = null;
PrintWriter out = null;
PrintWriter pw = null;

try {
FileReader inpf = new FileReader(args[0]);
// Create buffered reader
in = new BufferedReader(inpf);
out = new PrintWriter(System.out);

} catch (FileNotFoundException e) {
e.printStackTrace();

}
try {

pw = new PrintWriter(new FileWriter(args[1]));
pw.println("<?xml version=\"1.0\" encoding=\"ISO-8859-1\" standalone=\"yes\"?>");
pw.println("<CORPUS>");
System.out.println("ready to process");
str = "x"; // set for initial test below
while (str != null){

linect = 0;
htmlflg = false;

body = "";
byline = "";
subject = "";
source = "";
title = "";
text.setLength(0);
textflg = false;
try {
str = in.readLine(); // read first .I
} catch (IOException e) {

e.printStackTrace();
}
try {

while ((str = in.readLine()) != null) {
if (str.startsWith(".I")){

break; //a new document starts here
}

if (str.startsWith(".U")) {
continue; // skip
}

else if (str.startsWith(".S")){
source = in.readLine(); // source of doc
continue;
}

else if (str.startsWith(".A")){
byline = in.readLine(); // authors
continue;
}

else if (str.startsWith(".T")){
title = in.readLine(); // title
continue;
}

else if (str.startsWith(".M")){
// need to strip final . if there

34 An Extended Example

subject = in.readLine(); // the topics of the doc
if (subject.endsWith(".")) {

subject = subject.substring(0,subject.length() - 1);
}

subject = subject + ";";
continue;
}

else if (str.startsWith(".W")){ // text
while (!body.endsWith(".")) {

body = body + in.readLine();
}

continue;
}

else { // a skippable line
continue;

}
}
} catch (IOException e) {

e.printStackTrace();
}

if (body.length() == 0) continue;
// now put saved data into XML file

text.append(body); // set stringbuffer
int bodlen = body.length();

// write out sgml
pw.println("<DOC>");
pw.println("<TITLE>");
pw.println(title);
pw.println("</TITLE>");
pw.println("<AUTHOR>");
pw.println(byline);
pw.println("</AUTHOR>");
pw.println("<SUBJECTS>");

// iterate over the subjects, separated by semicolon

StringTokenizer tksu = new StringTokenizer(subject,";");
while (tksu.hasMoreTokens()){

subjec = tksu.nextToken();
// Increase frequency of subject by dropping suffix
if (subjec.indexOf("/") > 0) {

subjec = subjec.substring(0,subjec.indexOf("/"));
}
subjec = subjec.trim();
subjec = subjec.replace(’ ’,’_’);

pw.println("<SUBJECT>");
pw.println(subjec);
pw.println("</SUBJECT>");
}
pw.println("</SUBJECTS>");
pw.println("<TEXT>");

// instead of one long line, print text in short lines
int nech = 0;
int sch = 0; // starting point
int ech = 60; // arbitrary ending point

while(ech < bodlen) {
nech = ech;

for (int itx = ech; itx > sch; itx--){

5.4 Conclusion 35

if (!(text.charAt(itx) == ’ ’)) {
nech = itx;

}
else break;
}
ech = nech - 1;
line = text.substring(sch,ech);
pw.println(line);
sch = nech;
ech = sch + 60;

}
pw.println("</TEXT>");
pw.println("</DOC>");

}
} catch (IOException e) {

e.printStackTrace();
}

try {
pw.println("</CORPUS>");
out.close();
in.close();
pw.close();

} catch (IOException e) {
e.printStackTrace();

}
}
}

